Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
نویسندگان
چکیده
Carbon nanofibers (CNFs) randomly embedded in poly (lactic-co-glycolic-acid) (PLGA) composites have recently been shown to promote cardiomyocyte growth when compared with conventional PLGA without CNFs. It was shown then that PLGA:CNF composites were conductive and that conductivity increased as greater amounts of CNFs were added to pure PLGA. Moreover, tensile tests showed that addition of CNFs increased the tensile strength of the PLGA composite to mimic that of natural heart tissue. Most importantly, throughout all cytocompatibility experiments, cardiomyocytes were viable and expressed important biomarkers that were greatest on 50:50 wt% CNF:PLGA composites. The increased selective adsorption of fibronectin and vitronectin (critical proteins that mediate cardiomyocyte function) onto such composites proved to be the mechanism of action. However, the natural myocardium is anisotropic in terms of mechanical and electrical properties, which was not emulated in these prior PLGA:CNF composites. Thus, the aim of this in vitro study was to create and characterize CNFs aligned in PLGA composites (at 50:50 wt%, including their mechanical and electrical properties and cardiomyocyte density), comparing such results with randomly oriented CNFs in PLGA. Specifically, CNFs were added to soluble biodegradable PLGA (50:50 PGA:PLA weight ratio) and aligned by applying a voltage and then allowing the polymer to cure. CNF surface micron patterns (20 μm wide) on PLGA were then fabricated through a mold method to further mimic myocardium anisotropy. The results demonstrated anisotropic mechanical and electrical properties and significantly improved cardiomyocyte density for up to 5 days on CNFs aligned in PLGA compared with being randomly oriented in PLGA. These results indicate that CNFs aligned in PLGA should be further explored for improving cardiomyocyte density, which is necessary in numerous cardiovascular applications.
منابع مشابه
Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA
Previous studies have demonstrated greater cardiomyocyte density on carbon nanofibers (CNFs) aligned (compared to randomly oriented) in poly(lactic-co-glycolic acid) (PLGA) composites. Although such studies demonstrated a closer mimicking of anisotropic electrical and mechanical properties for such aligned (compared to randomly oriented) CNFs in PLGA composites, the objective of the present in ...
متن کاملComparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملMagnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties
Engineering applications of carbon nanofibers and nanotubes require their alignment in specific directions. Single-walled carbon nanotubes can be aligned in a magnetic field due to the presence of small amounts of catalyst elements, such as Ni and Co. However, for carbon nanofibers, their extremely low magnetic susceptibility is not sufficient for magnetically induced alignment. We present a me...
متن کاملMechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application
BACKGROUND Recent advances in nanotechnology (materials with at least one dimension between 1 nm and 100 nm) have led to the use of nanomaterials in numerous medical device applications. Recently, nanomaterials have been used to create innovative biomaterials for cardiovascular applications. Specifically, carbon nanofibers (CNF) embedded in poly(lactic-co-glycolic-acid) (PLGA) have been shown t...
متن کاملImproved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites
Articles you may be interested in Large effect of titanium precursor on surface reactivity and mechanical strength of electrospun nanofibers coated with TiO2 by atomic layer deposition Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends Appl. Microwave Hall...
متن کامل